Reuse of Pillaring Agent in Sequential Bentonite Pillaring Processes

نویسندگان

  • Francine Bertella
  • Sibele B. C. Pergher
چکیده

This work describes the synthesis and characterization of pillared clays using a new pillaring method: the reuse of the pillaring solution. First, an Al pillared clay (PILC) was synthesized, and after filtration, the pillaring agent was stored and reused for an additional three pillaring procedures (P1, P2, and P3). The filtered pillaring solution was stored for one year and then reused for one additional pillaring procedure (P4). The samples were analyzed using XRD, N₂ physisorption measurements and chemical analysis (EDX). All of the samples exhibited basal spacings larger than 17 Å and BET surface areas greater than 160 m²/g. After the P4 pillaring, the pillaring agent was precipitated with a Na₂SO₄ solution, and the resulting solid was analyzed using XRD and SEM. The results indicated that even after a total of five pillaring procedures, Al13 ions were still present in solution. Therefore, it is possible to reuse the pillaring solution four times and to even store the solution for one year, which is important from an industrial perspective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scale Up Pillaring: A Study of the Parameters That Influence the Process

Pillared clays (PILCs) are interesting materials mostly due to their high basal spacing and surface area, which make them suitable for adsorption and catalysis applications, for example. However, the production of these materials on industrial scale is dependent on research about what parameters influence the process. Thus, the objective of this work was to evaluate what parameters influence th...

متن کامل

A family of porous lonsdaleite-e networks obtained through pillaring of decorated kagomé lattice sheets.

A new and versatile class of metal-organic materials (MOMs) with augmented lonsdaleite-e (lon-e-a) topology is presented herein. This family of lon-e nets are built by pillaring of hexagonal two-dimensional kagomé (kag) lattices constructed from well-known [Zn2(CO2R)4] paddlewheel molecular building blocks (MBBs) connected by 1,3-benzenedicarboxylate (bdc(2-)) linkers. The pillars are [Cr3(μ3-O...

متن کامل

Temperature dependent charge distribution in three-dimensional homochiral cadmium camphorates.

Three homochiral cadmium camphorates have been prepared through temperature-dependent synthesis; they form 3D homochiral networks without the crosslinking or pillaring functions of auxiliary neutral bipyridines and exhibit various degrees of charge separation associated with the degree of hydration and controllable by temperature.

متن کامل

Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions.

The reaction of Zn(NO3)2 x 6H2O, various dicarboxylic acids, and either 4,4'-bipyridine or N,N'-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide produces a family of anisotropic, mixed-ligand, open-framework compounds featuring paddle-wheel-type coordination of Zn(II) pairs in two dimensions and pyridyl ligand pillaring in the third. Despite 2-fold interpenetration, the compounds contain ch...

متن کامل

Microwave-Assisted Pillaring of a Montmorillonite with Al-Polycations in Concentrated Media

A montmorillonite has been intercalated with Al3+ polycations, using concentrated solutions and clay mineral dispersions. The reaction has been assisted by microwave radiation, yielding new intercalated solids and leading to Al-pillared solids after their calcination at 500 °C. The solids were characterized by elemental chemical analysis, X-ray diffraction, FTIR spectroscopy, thermal analyses, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017